

Reliability of Energy Efficient Building Retrofitting -Probability Assessment of Performance and Cost (RAP-RETRO)

How do we design and realize robust retrofitting with low energy demand and life cycle costs, while controlling risk levels for performance failure?

Carl-Eric Hagentoft Operating agent (OA)

Start : April 2010 Ends: 2014

Presentations

Reliability of Energy Efficient Building Retrofitting -Probability Assessment of Performance and Cost Carl-Eric Hagentoft, Sweden

Why risk assessment and who should do it? Andreas Holm, Germany Achilles Karagiozis, USA

How to do it? Frame work and examples. *Angela Sasic*, Sweden *Carsten Rode*, Denmark

Monte Carlo and other stochastical methods – Are we playing roulette? Hans Janssen, Belgium Staf Roels, Belgium

Nothing is better than the data filled in! Nuno Ramos, Portugal John Grunewald, Germany

Background

Improving the energy efficiency is often the main focus.

Adding insulation and changing the air and vapor tightness results in a different building envelope.

Complex interaction between building envelope, building services, external climate and the users.

As a result retrofitting measures not only often do not meet the energy targets; they also result in performance failures.

Andreas Holm Achilles Karagiozis

Example: Interior Insulation **Risks: Benefits** Reduce heat loss Moisture damages: mold, • • frost Installation independent of • Insufficient U-values outer weather conditions • Complex detailed solution • • Appearance of the façade not affected Exhaust of harmful • substances => indoor air • Sometimes the only possible quality (EPS, XPS, PUR) solution when building is under monumental Fire protection • protection . . . Faster heating up • Uneven wall surfaces can be • adjusted

Interior Insulation Challenges

Damage connected with interior insulation

Intention of this Annex is to Quantify/Prevent Failures in Retrofit Applications

Questions that Decision-Makers and Stakeholders Typically Ask (Or should ask!)

- How well do we know these numbers/expected performances?
 - What is the precision of the estimates?
 - Is there a systematic error (bias) in the estimates?
 - Are the estimates based upon measurements, modeling, or expert judgment?
- How significant are differences between two alternative designs?
- How significant are <u>durability trends over time</u>?
- How effective are proposed <u>thermal and moisture control or</u> <u>management strategies</u>?
- What is the key source of uncertainty in these numbers?
- How can <u>uncertainty be reduced</u>?
- How can <u>climate factors</u> impact long-term and short-term performance

Who are the Stakeholders -Who will use our findings?

Specialized Architects/Engineers

They want to address design issues/improvements

- Want to optimize energy performance
- → Requirement: Highly trained individuals
- Developers/ESCO's, Government: Federal & Municipalities Understand the economics
 - Understand risk implications

Want to understand cost of failures and future costs to society

"Absolute certainty is a privilege of uneducated minds-and fanatics. It is, for scientific folk, an unattainable ideal"

Cassius J. Keyser

How to do it? Frame work and examples

Angela Sasic Kalagasidis Carsten Rode

The Framework as a flow chart

Different sections and loops.

Outgoing loops mean quick 'exit', i.e. when the assessment shows too high or too low risk.

Backward loops – that's usually a trouble, i.e. mistake made in the assessment process

Thanks!

Reports will be available during the end of 2014!

Time for Questions!

Definition of Risk

The risk associated with a given activity:

$$R_{A} = \sum_{i=1}^{n_{E}} R_{E_{i}} = \sum_{i=1}^{n_{E}} P_{E_{i}} \cdot C_{E_{i}}$$

- risk contribution R_{Ei} from event E_i
 event Probability P_{ei}
 consequences of the event C_{Ei}