

## Robust solutions of design of internal insulation in historic buildings in regards to hygrothermal performance

Nickolaj Feldt Jensen Ph.D. from DTU Civil Engineering

1

## Background and relevance

- In Europe a large share of the building stock was constructed prior to 1945, before we had regulations regarding energy performance.
- A desire to reduce energy consumption and greenhouse gas emissions, and improved indoor thermal comfort







## State-of-the-art: Internal insulation

- Applied in buildings where exterior will not be possible
- Reduces heat flow to the existing wall
- Reduces drying potential of the existing wall.
- Does not keep the existing wall warm and protect it against the outdoor climatic conditions.
- Will not revolve thermal bridges



## State-of-the-art: Types of internal insulation

#### **Diffusion-tight**

**Diffusion-open** 

Diffusion-open & capillary active

active dehumidification

**Diffusion-tight with** 

Saint-Gobain Isover RetroWall



Insulation mat with vapour barrier



Rigid foam insulation boards with/without barrier



E.g. mineral wool or mat of various organic fibres, without vapour barrier



E.g. Calcium silicate or autoclaved aerated concrete



25. November 2021 DTU Civil Engineering



Hygrothermal performance: diffusion-open, capillary active, and diffusion-tight systems

High moisture levels, fungal growth, pH value and nutrients

Fungal growth and the indoor environment

Methods: experiment 1

Large scale field experiment

- 2 test containers and 24 test walls (16 facing south-west & 8 facing north-east)
- 1<sup>1</sup>/<sub>2</sub> brick thick walls (358 mm)
- Constructed with interior partition wall, embedded wooden wall plate and beam end
- 8 insulation systems
- Walls with/without hydrophobisation on the exterior surface



Hygrothermal performance: diffusion-open, capillary active, and diffusion-tight systems

High moisture levels, fungal growth, pH value and nutrients

Fungal growth and the indoor environment

#### Methods: experiment 1

Large scale field experiment

- 9 digital sensors per wall (red dots)
- DC electical resistance in wood and gypsum dowels (blue and green dots)
- Indoor boundary:
  > 20 °C and 60% RH
- No cooling/ dehumidification



8





capillary active, and diffusion-tight systems

High moisture levels, fungal growth, pH value and nutrients

a)

Fungal growth and the indoor environment

T Plastic grate

with primer

#### Methods: experiment 2 and 3

Small-scale test walls

- Two consecutive experiments ٠
- 17 test walls ٠ (LxWxH: 350 mm x 350 mm x 180 mm)
- Small box: serves as water reservoir
- Large box: serves as small climate zone
- Aim: to maintain RH > 96% in masonry/ ٠ insulation interface
- Digital sensors in wall interface and climate zones (red dots)
- Artificially contaminated with spores from 4 common indoor fungal species (with different moisture requirements)

#### Decontamination experiment



- Wallpaper with mould contaminated adhesive
- × HYT sensor
- Demineralised water

#### Insulation experiment



internal surface material and adhesive glue mortar



High moisture levels, fungal growth, pH value and nutrients Fungal growth and the indoor environment

#### Methods: experiment 2

Fungal decontamination experiment

- 12 test walls fitted with woodchip wallpaper, artificially contaminated
- 5 un-inoculated reference walls
- 3 decontamination methods

Hand-power paint scraper



Mechanical hammer and chisel





Micro-clean method (Dry-steam cleaning)





High moisture levels, fungal growth, pH value and nutrients

Fungal growth and the indoor environment

#### Methods: experiment 3

Internal insulation experiment

- 17 test walls
- 5 insulation systems (Phenolic foam, PUR-CM, AAC, CaSi, and Cork-lime render)
- Spore suspension given in the centre of the test surface (prior to installation of systems)
- Material and fungal samples taken after 6 and 12 months









High moisture levels, fungal growth, pH value and nutrients

Fungal growth and the indoor environment

## Methods: Fungal testing (experiment 1, 2 and 3)

Fungal growth testing procedure

- Air samples
  - 1) 100 L air passed over Petri dishes
- Core samples
  - 2) Drilling out core samples
  - 3) Mycometer surface test
  - 4) Swab test or Agar contact plate
  - 5) Material samples (moisture content and pH)
  - 6) Mycometer bulk material test (later in laboratory)
  - 7) Mycometer fungal analysis





High moisture levels, fungal growth, pH value and nutrients

Fungal growth and the indoor environment

Mathematical mouldgrowth models

#### Methods: Experiment 4

#### **VOC diffusion experiment**

 Cup experiment to mimic diffusion of MVOCs produced by fungal growth

#### • Tests for:

- adhesive glue mortars -
- insulation materials
- > membranes
- Renders
- gypsum board



- 3 VOCs: Acetone, Ethanol, 2-heptanone
- Compared diffusion through the entire systems to convection through a 1 m by 1 cm crack





Hygrothermal performance: diffusion-open, capillary active, and diffusion-tight systems

High moisture levels, fungal growth, pH value and nutrients

Fungal growth and the indoor environment

## Results: Hypothesis 1

Hygrothermal performance: diffusion-open, capillary active, and diffusion-tight systems

65 60

55

50 01-05-2015

01-11-2015

01-05-2016

--- G7\_PUR-CM\_SW

G2\_PUR-CM+H\_SW

01-11-2016

Fungal growth and the indoor environment

#### Results

•



Effect from ٠ hydrophobisation varied between systems and orientations



+H: hydrophobisation, \*Installation Phenolic, \*\* Installation Cork-lime

G6\_Phenolic+H\_SW

--- G5 Phenolic SW

01-11-2017

01-05-2017

01-05-2018

01-11-2018

---G1 MW SW

01-05-2019

01-11-2019

Hygrothermal performance: diffusion-open, capillary active, and diffusion-tight systems

Fungal growth and the indoor environment

#### Results

plate

٠

٠



beam ends

systems

ygrothermal performance: diffusion-open, apillary active, and diffusion-tight systems High moisture levels, fungal growth, pH value and nutrients

Fungal growth and the indoor environment

## Results: Hypothesis 2



capillary active, and diffusion-tight systems

High moisture levels, fungal growth, pH value and nutrients Fungal growth and the indoor environment

#### Results

Large test walls

pH test:

٠

•

٠

٠

\*Cork-lime plaster, not adhesive mortar

| l test:<br>rge test walls    |                      | Fresh lime<br>render | Lime render<br>(Nov. 2018)<br>fter 3½ years) | Lime render<br>(Sep. 2019)<br>fter 4½ years) | Lime render<br>(Dec. 2019) | esh adhesive<br>mortar | Adhesive<br>mortars<br>(Nov. 2018)<br>fter 3½ years) | Adhesive<br>mortars<br>(Sep. 2019)<br>fter 4½ years) | Adhesive<br>mortars<br>(Dec. 2019) |
|------------------------------|----------------------|----------------------|----------------------------------------------|----------------------------------------------|----------------------------|------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------|
| High initial pH (>11) in all | Wall ID              |                      | (at                                          | at a                                         |                            | Ľ                      | (at                                                  | (at                                                  |                                    |
| systems                      | G1_MW_SW             | 12.7                 | 9.2                                          | 9.2                                          | 10.0                       |                        |                                                      |                                                      |                                    |
| ,<br>nH daclinad over time   | G3_Reference_SW      | 12.7                 | 9.2                                          | 9.3                                          | 9.3                        |                        |                                                      |                                                      |                                    |
| pri decimed over time        | G14_Reference_NE     | 12.7                 |                                              | 9.2                                          | 9.2                        |                        |                                                      |                                                      |                                    |
| High pH was maintained       | X5_Ref_SW            | 12.7                 |                                              | 9.1                                          |                            |                        |                                                      |                                                      |                                    |
| for longer in more           | G4_CaSi_SW           | 12.7                 | 9.5                                          | 9.4                                          |                            | 12.7                   | 10.2                                                 | 9.0                                                  |                                    |
|                              | G13_CaSi_NE          | 12.7                 | 9.5                                          | 9.3                                          |                            | 12.7                   | 10.8                                                 | 9.2                                                  |                                    |
| aimusion-tight systems       | X1_AAC+R_SW          | 12.7                 | 9.5                                          | 9.5                                          |                            | 12.0                   | 9.4                                                  | 9.2                                                  |                                    |
| Low pH (<9.5) in highly      | X2_AAC_SW            | 12.7                 | 9.4                                          | 9.4                                          |                            | 12.0                   | 9.7                                                  | 9.2                                                  |                                    |
| diffusion-open systems       | X3_AAC+H_SW          | 12.7                 | 9.4                                          | 9.1                                          |                            | 12.0                   | 9.5                                                  | 9.5                                                  |                                    |
|                              | X6_AAC+H+TB_SW       | 12.7                 |                                              | 9.3                                          |                            | 12.0                   |                                                      | 9.0                                                  |                                    |
| within 31/2 years            | G8_Cork Plaster_SW   | 12.7                 |                                              |                                              | 11.7                       | 12.7*                  |                                                      |                                                      | 12.0*                              |
|                              | G9_Cork Plaster+H_NE | 12.7                 |                                              |                                              | 10.9                       | 12.7*                  |                                                      |                                                      | 12.1*                              |
|                              | G2_PUR-CM+H_SW       | 12.7                 | 12.6                                         | 12.0                                         |                            | 12.0                   | 12.6                                                 | 12.5                                                 |                                    |
|                              | G7_PUR-CM_SW         | 12.7                 | 12.7                                         | 12.1                                         |                            | 12.0                   | 12.5                                                 | 12.2                                                 |                                    |
|                              | G10_PUR-CM_NE        | 12.7                 | 9.7                                          | 12.4                                         |                            | 12.0                   | 12.6                                                 | 12.2                                                 |                                    |
|                              | G15_PUR-CM+H_NE      | 12.7                 | 12.8                                         | 12.5                                         |                            | 12.0                   | 12.6                                                 | 12.3                                                 |                                    |
|                              | G5_Phenolic_SW       | 12.7                 |                                              |                                              | 12.6                       | 12.4                   |                                                      |                                                      | 12.5                               |
|                              | G6 Phenolic+H SW     | 12.7                 |                                              |                                              | 12.7                       | 12.4                   |                                                      |                                                      | 12.6                               |
|                              | G11_Phenolic+H_NE    | 12.7                 |                                              |                                              | 12.7                       | 12.4                   |                                                      |                                                      | 12.6                               |
|                              | G12_Phenolic_NE      | 12.7                 |                                              |                                              | 11.9                       | 12.4                   |                                                      |                                                      | 12.5                               |

Robust solutions of design of internal insulation in historic buildings in regards to hygrothermal performance 20

Hygrothermal performance: diffusion-open, capillary active, and diffusion-tight systems

High moisture levels, fungal growth, pH value and nutrients

Fungal growth and the indoor environment

#### Results

Fungal tests: Large test walls/high pH

- Mycometer tests: Fungal biomass below normal background level
- Swab tests: No colony forming spores found in samples taken in PUR-CM and Phenolic foam walls
- No fungal growth detected in systems with high pH



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | Surfac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ce test | Bulk material test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|
| lest round                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Wall ID            | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | В       | Outer A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Outer B |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | G2_PUR-CM+H_SW     | BDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BDL     | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 32      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | G7_PUR-CM_SW       | BDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BDL     | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | G10_PUR-CM_NE      | BDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BDL     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 89      |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | G15_PUR-CM+H_NE    | BDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BDL     | Bulk material test      Outer A    Outer B      77    32      12    27      4    89      BDL    1      BDL    1      BDL    BDL      BDL    18      1    11      1    BDL      BDL    1      BDL    1      SDL    1      BDL    1      35    34      28    26                                                                                                                                                                                                                                          |         |  |
| (Nov. 2018)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G5_Phenolic_SW     | BDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BDL     | BDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BDL     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | G6_Phenolic+H_SW   | BDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BDL     | BDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BDL     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | G11_Phenolic+H_NE  | BDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BDL     | BDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BDL     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | G12_Phenolic_NE    | BDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BDL     | BDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BDL     |  |
| 4 G2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | G2_PUR-CM+H_SW     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | G7_PUR-CM_SW       | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23      | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63      |  |
| (Sep. 2019)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G10_PUR-CM_NE      | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9       | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | G15_PUR-CM+H_NE    | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | G5_Phenolic_SW     | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | G6_Phenolic+H_SW   | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BDL     |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | G11_Phenolic+H_NE  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18      | BDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1       |  |
| (Dec. 2019)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G12_Phenolic_NE    | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6       | b      Bulk material test        B      Outer A      Outer B        BDL      77      32        BDL      12      27        BDL      4      89        BDL      4      89        BDL      BDL      1        BDL      BDL      1        BDL      BDL      BDL        3      6      5        23      9      63        9      13      1        5      10      18        4      1      11        12      1      BDL        18      BDL      1        6      5      BDL        31      35      34        26      28 |         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | G8_Cork Plaster_SW | Surface test      Bulk material test        A      B      Outer A      Outer        M+H_SW      BDL      BDL      BDL      77      32        M_SW      BDL      BDL      BDL      12      27        CM_NE      BDL      BDL      BDL      4      89        CM+H_NE      BDL      BDL      BDL      BDL      12      27        CM_NE      BDL      BDL      BDL      4      89        CM+H_NE      BDL      SC      SC      SC      SC      SC      SC      SC      SC <th< td=""><td>34</td></th<> | 34      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |  |
| G2_PUR-CM+H_SW        G7_PUR-CM_SW        G10_PUR-CM_NE        G15_PUR-CM+H_NE        (Nov. 2018)        G5_Phenolic_SW        G6_Phenolic+H_SW        G11_Phenolic+H_NE        G12_Phenolic_NE        G12_Phenolic_NE        G12_Phenolic_NE        G12_PUR-CM+H_SW        G11_Phenolic+H_NE        G12_PUR-CM+H_SW        G15_PUR-CM_H_SW        G15_PUR-CM_NE        G15_PUR-CM_NE        G15_PUR-CM_NE        G15_PUR-CM_NE        G15_PUR-CM_NE        G15_PUR-CM_NE        G5_Phenolic_SW        G6_Phenolic+H_NE        G5_Phenolic_SW        G6_Phenolic+H_SW        S      G11_Phenolic+H_NE        G8_Cork Plaster      G8_Cork Plaster        G9_Cork Plaster+H_SW      G9_Cork Plaster+H_SW | 30                 | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28      | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |  |

#### BDL: Below Detection Level



High moisture levels, fungal growth, pH value and nutrients

Fungal growth and the indoor environment

#### Results

Fungal tests: Small-scale test walls/high pH

- Mycometer tests: Fungal biomass below normal background level
- Agar contact plate: Fungal spores viable in large numbers
- Most prevailing fungi: Aspergillus versicolor



|   |                            | Mycometer Value (MV) |         |                |                       |    |                         |         |                |                       |    | Colony forming                |             |
|---|----------------------------|----------------------|---------|----------------|-----------------------|----|-------------------------|---------|----------------|-----------------------|----|-------------------------------|-------------|
|   |                            |                      | Results | s after 6 r    | nonths                |    |                         | Results | after 12       | months                |    | units                         | (CFU)       |
| Η |                            | ionry/               | face    |                | ermos<br>mm<br>lation |    | onry/<br>lation<br>face |         |                | ermos<br>mm<br>lation |    | Total CFU from V8<br>and DG18 |             |
|   |                            | Mas                  | inter   | nesive<br>rtar | Oute<br>t 10<br>insu  |    | Mas<br>insu<br>inter    |         | nesive<br>rtar | Oute<br>t 10<br>insul |    | 6<br>onths                    | 12<br>onths |
|   |                            | А                    | В       | Adł<br>mo      | А                     | В  | А                       | В       | Adh<br>mo      | А                     | В  | ы                             | Ĕ           |
|   | PUR-CM Hand-power          | 46                   | 11      | 6              | 10                    | 5  | 11                      | 15      | 16             | 3                     | 2  | 3                             | 154         |
|   | Phenolic Hand-power        | 5                    | 8       | 6              | 8                     | 4  | 11                      | 12      | 5              | 1                     | 1  | 2                             | 1200        |
|   | AAC Hand-power             | 7                    | 7       | 4              | 4                     | 3  | 10                      | 8       | 9              | 1                     | 1  | 58                            | 475         |
|   | CaSi Hand-power            | 7                    | 12      | 6              | 13                    | 38 | 10                      | 9       | 10             | 22                    | 23 | 0                             | 100         |
|   | PUR-CM Mechanical          | 17                   | 5       | 3              | 4                     | 3  | 13                      | 12      | BDL            | 3                     | 0  | 1                             | 0           |
|   | Phenolic Mechanical        | 1                    | 3       | 8              | 8                     | 5  | 34                      | 41      | 19             | 2                     | 1  | 634                           | 611         |
|   | AAC Mechanical             | BDL                  | 0       | 6              | 7                     | 3  | 5                       | 5       | 2              | 4                     | 1  | 7                             | 3           |
|   | CaSi Mechanical            | 4                    | 9       | 5              | 18                    | 36 | 7                       | 11      | 42             | 30                    | 20 | 2                             | 28          |
|   | PUR-CM Microclean          | 14                   | 14      | 5              | 3                     | 4  | 15                      | 16      | 30             | 3                     | 1  | 2                             | 301         |
|   | Phenolic Microclean        | 26                   | 6       | 4              | 6                     | 6  | 9                       | 18      | 21             | 36                    | 10 | 112                           | 1214        |
|   | AAC Microclean             | 32                   | 14      | 19             | 7                     | 4  | 8                       | 15      | 6              | 3                     | 5  | 0                             | 4           |
|   | CaSi Microclean            | 20                   | 7       | 6              | 25                    | 26 | 3                       | 13      | 6              | 36                    | 33 | 228                           | 8           |
|   | PUR-CM Un-inoculated       | 7                    | 7       | 4              | 20                    | 2  | 11                      | 11      | 2              | 1                     | 3  | 75                            | 4           |
|   | Phenolic Un-inoculated     | 3                    | 1       | 2              | 5                     | 3  | 18                      | 19      | 19             | 1                     | 1  | 216                           | 359         |
|   | AAC Un-inoculated          | 3                    | 2       | 2              | 5                     | 3  | 6                       | 5       | 4              | 2                     | 2  | 5                             | 13          |
|   | CaSi Un-inoculated         | 5                    | 5       | 13             | 18                    | 38 | 9                       | 10      | 9              | 21                    | 21 | 5                             | 168         |
|   | Cork plaster Un-inoculated | 19                   | 26      |                | 26                    | 27 | 12                      | 13      |                | 19                    | 19 | 1                             | 3           |

#### BDL: Below Detection Level

Robust solutions of design of internal insulation in historic buildings in regards to hygrothermal performance

22



High moisture levels, fungal growth, pH value and nutrients

Fungal growth and the indoor environment

#### Results Fungal tests: Large test walls/low pH

- Below background level biomass in CaSi walls
- High fungal biomass in AAC and MW walls
- Fungal growth in AAC likely due to the presence of organic additives in adhesive mortar (determined by TGA)



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | Sur | face |       |       | Mat | Material |       |       |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----|------|-------|-------|-----|----------|-------|-------|--|--|--|
| Test round                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Insulation system    |     |      | Outer | Outer | Mid | Mid      | Inner | Inner |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Α                    | В   | А    | В     | А     | В   | Α        | В     |       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G1_MW_SW             | 21  | BDL  | 469   | 159   |     |          |       |       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G1_MW_SW (Wood stud) | 960 | 788  |       |       |     |          |       |       |  |  |  |
| 1<br>(Nov. 2018)<br>(Nov. 2018)<br>(N | G4_CaSi_SW           | BDL | BDL  | BDL   | BDL   |     |          |       |       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G13_CaSi_NE          | BDL | BDL  | 14    | 10    |     |          |       |       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X1_AAC+R_SW          | BDL | BDL  | 162   | 139   | 112 | 112      |       |       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X2_AAC_SW            | BDL | 41   | 482   | 1459  | 382 | 390      | BDL   | 7     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X3 AAC+H SW          | 26  | 37   | 43    | 32    |     |          |       |       |  |  |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | X1_AAC+R_SW          | 157 | 123  | 257   | 230   | 494 | 598      | 7     | 6     |  |  |  |
| ∠<br>(Mar. 2019)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X2_AAC_SW            | 141 | 86   | 384   | 254   | 416 | 459      | 6     | 7     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X3_AAC+H_SW          | 26  | 31   | 209   | 410   | 90  | 69       |       |       |  |  |  |
| 3<br>(Mar. 2019)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X1_AAC+R_SW          | 227 | 159  | 969   | 1084  | 134 | 128      | 6     | 7     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X2_AAC_SW            | 220 | 196  | 824   | 982   | 119 | 98       | 6     | 6     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X3 AAC+H SW          | 120 | 307  | 585   | 712   | 5   | 3        | 5     | 6     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G1_MW_SW             | 28  | 13   | 53    | 23    |     |          |       |       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G1_MW_SW (Wood stud) | 35  | 188  |       |       |     |          |       |       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G4_CaSi_SW           | 4   | 6    | 9     | 5     |     |          |       |       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G13_CaSi_NE          | 5   | 5    | 4     | 5     |     |          |       |       |  |  |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | X1_AAC+R_SW          | 42  | 32   | 377   | 423   | 59  | 54       |       |       |  |  |  |
| (Sep. 2019)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X2_AAC_SW            | 140 | 137  | 332   | 461   | 27  | 24       |       |       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X3_AAC+H_SW          | 195 | 227  | 450   | 490   | 3   | 24       |       |       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X6_AAC+H+TB_SW (S1)  | 27  | 102  | 45    | 48    | 3   | 2        |       |       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X6_AAC+H+TB_SW (S2)  | 165 | 56   | 224   | 239   | 3   | 3        |       |       |  |  |  |
| X6 AAC+H+TB SW (S3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | 235 | 255  | 451   | 582   | 19  | 10       |       |       |  |  |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | G1_MW_SW             |     |      | 195   | 394   |     |          |       |       |  |  |  |
| (Dec. 2019)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G1 MW SW (Wood stud) | 615 | 162  |       |       |     |          |       |       |  |  |  |



High moisture levels, fungal growth, pH value and nutrients

Fungal growth and the indoor environment

## Results: Hypothesis 3



High moisture levels, fungal growth, pH value and nutrients

Fungal growth and the indoor environment

#### Results

VOC diffusion experiment

- VOCs were able to penetrate most examined materials
- Higher vapour flow rate density for more volatile VOCs

Diffusive and convective VOC transfer

- VOC convection was similar to diffusion through highly diffusionopen systems.
- VOC convection was higher than diffusion through more diffusiontight systems
- More diffusion-tight systems will provide better protection



#### Vapour diffusion and convection flows through the insulation systems [kg/day]

|                 | Acetone | Ethanol | 2-heptanone | Water  |
|-----------------|---------|---------|-------------|--------|
| Convective flow | 1.548   | 0.297   | 0.018       | 0.009  |
| CaSi            | 1.175   | 0.208   | 0.022       | 0.015  |
| AAC             | 1.175   | 0.200   | 0.022       | 0.016  |
| PUR-CM          | 0.216   | 0.013   | 0.001       | 0.003  |
| Phenolic        | 0.0004  | 0.0002  | 0.0002      | 0.0007 |
| Cork Plaster    | 1.016   | 0.169   | 0.019       | 0.032  |



High moisture levels, fungal growth, pH value and nutrients

Fungal growth and the indoor environment

#### Results

Fungal decontamination methods

- Hand-power (paint scraper): insufficient
- Mechanical (hammer & chisel): very effective
- Micro-clean (dry-steam): effective, but risk of under-treating or missing areas
- Choice of method, minor importance
  - For systems with high pH adhesive mortars



| Mycometer Surface Hand-power |       |       |       |       | Mechanical |       |       |       | Micro-clean |       |       |       |
|------------------------------|-------|-------|-------|-------|------------|-------|-------|-------|-------------|-------|-------|-------|
| Value (MSV)                  | Wall1 | Wall2 | Wall3 | Wall4 | Wall1      | Wall2 | Wall3 | Wall4 | Wall1       | Wall2 | Wall3 | Wall4 |
| Sample A                     | 2388  | 4117  | 3644  | BDL   | BDL        | BDL   | BDL   | BDL   | BDL         | BDL   | BDL   | 69    |
| Sample B                     | 4353  | 2653  | 5794  | 4212  | BDL        | BDL   | BDL   | BDL   | BDL         | BDL   | BDL   | 66    |



High moisture levels, fungal growth, pH value and nutrients

Fungal growth and the indoor environment

## Conclusions and Perspective

- Hypothesis 1: Moisture levels better reduced using diffusion-open, capillary active insulation in comparison with diffusion-tight insulation.
  - > Depends on whether additional measures are applied or not.
  - Best performance: diffusion-tight system with exterior hydrophobisation
- Hypothesis 2: Fungal growth and pH level
  - > With high pH level, no fungal growth was detected despite high moisture levels
  - > Diffusion tightness of the insulation system is important for maintaining high pH level
- *Hypothesis 3: Will fungal growth behind the insulation affects the indoor environment.* 
  - > VOCs produced by fungal growth could easily penetrate the insulation systems
  - More diffusion-tight system will protect better

## Thank you for the attention

